12 Ocak 2016 Salı

EKRAN KARTI HAKKINDAKİ BİLİNMESİ GEREKENLER

Ekran Kartı Nedir ?

Ekran Kartının ana görevi diğer arabirimlerden (işlemci, harddisk, ram vs..) anakart aracılığı ile aldığı dijital bilgileri gerekli dönüşümlerden sonra lcd ve crt monitöre aktararak görüntü oluşturulmasını sağlamaktadır. Anakart üstüne AGP ve PCI Express slotlarına bağlanmaktadır. Bu portların normal diğer portlardan farklı daha hızlı veri transferi yapısına sahip olmalarıdır. Ekran kartının üstünde işlemleri yapan bir GPU (Graphics processing unit - Grafik işleme ünitesi) ve bu işlemci ile birlikte çalışan ekran kartı belleği bulunmaktadır. Kart üzerindeki işlemleri çok daha hızlı gerçekleşmesi için ekran kartı bellekleri ekran kartı üstüne takılır böylece bilgisayar belleğini kullanma gereksinimi olmadan görüntü işlemlerinin hepsi ekran kartı üstünde gerçekleşmektedir. Aşağıdaki resimde ekran kartı üzerindeki GPU ve çevresindeki ram bellekler gözükmektedir.

http://resim.sanalkurs.net/uploads/1_600.jpg

Yeni nesil ekran kartlarında gpu ve bellekleri çektiği güçler arttığı için soğutulmaya ihtiyaç duyulmaktadır. Özellikle büyük güç gereksinimi bulunan kartların güç bağlantılar ayrı bir port ile yapılıp soğutma modülleri oldukça büyük yüzeyli ve petekli şekildedir. Yukarıdaki soğutucu yüzeyi çıkarılmış kart resmi Nvidia 8800GTS kartına ait olup ortadaki çekirdek G80 mimarisine sahiptir. Bu kartın soğutuculu resmi aşağıda gözükmektedir.

http://resim.sanalkurs.net/uploads/2_508.jpg

Yeni nesil kartlarda artık kullanılmamakla birlikte monitör bağlantı noktası olarak DVI ve CRT portları bulunmaktadır. CRT kullanıcıları için kart ile birlikte DIV/CRT dönüştürücü soketleri bulunmaktadır.

Ekran Kartı Nasıl Çalışır?
Temel olarak çalışma mantığı pci express veya agp slotundan aldığı bilgileri uygun şekilde işleyerek görüntü haline dönüştürmektedir. Görüntüler işlenirken gölgelendirme, 3d efektleri gibi işlemlerden sonra video memory - video bellek entegrelerine kayıt edilerek birleştirme işlemleri gerçekleştirilir ve bu işlemlerden sonra elde edilen görüntüler çıkış portlarına gönderilir. Yani film izlerken veya oyun oynarken hareketli olan görüntüler aslında kare kare işlenerek birleştirilip oluşturulmaktadır. Eklenecek olan efektler gpu üzerindeki, (pixel, texture, shader, raster operations pipeline - rop, vertex vs..) gibi ünitelerde işlenip video bellek yani ekran kartı üzerindeki belleklere iletilmektedir.

Ekran Kartının Üniteleri

Ekran kartı üzerindeki üniteler ve yapıları hakkında temel bilgileri verecek olursak;

GPU - Graphics processing unit: 
Bilgisayar işlemcisine benzer bir yapısı vardır. Üzerinde matematiksel işlemleri gerçekleştirmek için bir ALU ve bunu dışında grafik işlemeye yönelik özel bölümler bulunmaktadır. GPU yu CPU dan ayıran en temel özellik ise grafik işlemeye yönelik güçlendirilmiş bir işlemci olmasıdır. Grafik konusunda çok güçlü bir etkiye sahip olup bilgisayar işlemcisinden genel itibariyle çok daha fazla transistör sayısına sahiptir (yeni ve üst modellerde). Günümüzde ekran kartları için gpu üreten iki büyük firma bulunmaktadır. Nvidia ve Ati aralarındaki sürekli rekabetten dolayı her geçen gün gpu mimarilerini güçlendirmekte ve kapasitelerini arttırmaktadır. Nvidia ve atinin geçmişten günümüze mimarilerine bakacak olursak;

» Nvidia: NVIDIA NV4, NV5, NV10, NV11, NV15, NV17, NV18, NV20, NV25, NV28, NV30, NV31, NV34, NV35, NV36, NV38, NV40 (175 milyon transistör - 130nm üretim teknolojisi), NV41, NV44, NV44A, NV48, G70, G71, G72, G73, G80, G84, G86, G92 ve G92s mimarili gpu çekirdekleri.

» ATI: ATI R200, RV250, RV280, R300, RV350, R350, RV360, R360, RV370, RV380, R420, RV410, R423, R430, R480, RV515, R520, RV530, RV560, RV570, R580, R580+, R600, RV610, RV620 LE, RV620 PRO, RV630, RV635 PRO, RV670, RV670 XT ve RV670 PRO mimarili gpu çekirdekleri.

Aşağıdaki resimde örnek nvidia g92 ve ati r600 çekirdekleri gözükmektedir.

http://resim.sanalkurs.net/uploads/3_432.jpg

Firmaları son çıkardığı gpu çekirdeklerini inceleyecek olursak;

G80: 681 milyon transistör, 90nm üretim teknolojisi, 108W güç gereksinimi
G92: 754 milyon transistör, 65nm üretim teknolojisi, 146W güç gereksinimi
RV620 Pro: 180 milyon transistör, 55nm üretim teknolojisi, 40 adet SPU (Stream Processing Units)
R580: 384 milyon transistör, 90nm üretim teknolojisi
R600: 720 milyon transistör, 80nm üretim teknolojisi

Mobile PCI Express Module - MXM: Yeni nesil ekran kartlarının artık bir çoğu pci express x16 port teknolojisine göre üretilmektedir. 4000/8000MB/saniye veri transferine olanak sağlayan bu iletişim teknolojisi ile kartların daha uyumlu çalışması ise chip üreticileri kart üstüne donanımsal pci express uyumlandırıcı entegrelerini koymaktadırlar. Bu yöntemle iletişim protokolü için daha uyumlu ve daha hızlı kartlar üretilebilmektedir. Ekran kartları için kullanılan anakart portlarının tarihi gelişimine kısaca bakacak olursak;
- ISA XT- 8MB/Saniye, ISA AT 16MB/saniye, MCA, EISA, VESA, PCI, AGP 1x 264MB/Saniye, AGP 2x, AGP 4x, AGP 8x 2000MB/Saniye, PCIe x1, PCIe x4, PCIe x8, PCIe x16 4000/8000MB/saniye şekline veri transfer hızlarına sahiplerdir. Aşağıdaki resimde Nvidia MXM entegre modülü gözükmektedir.

http://resim.sanalkurs.net/uploads/4_347.jpg

Video Memory - Bellek: Yazının başlangıcında da açıkladığımız gibi ekran kartı işlemcileri, grafik işlemlerini çok daha hızlı yapmak ve kablo sorunundan kurtulmak için gerekli olan ram bellekleri kart üstüne işlemcinin çevresine takmaktadırlar. Mesafe yakınlığı ve yer avantajlarından dolayı fiziksel olarak ta bu işlem çok büyük avantaj sağlamaktadır. Ayrıca gpu ile bellekler arasındaki binlerce bağlantı bu kısa mesafede gerçekleştiği için hız konusunda da inanılmaz avantajlar oluşmaktadır. Aşağıdaki resimde gpu ve çevresinde video bellekler gözükmektedir.

http://resim.sanalkurs.net/uploads/5_296.jpg

Video bellek modüller çeşitli chip üreticileri tarafından üretilmektedir. Bunlardan en bilinenler; Samsung, Kingston, Hynix. Üretim teknolojilerini inceleyecek olursak;

» DDR: 166 - 950MHZ saat hızı, 1.2 - 30.4Gb/saniye veri transfer hızı
» DDR2: 533 - 1000MHZ saat hızı, 18.5 - 16Gb/saniye veri transfer hızı
» GDDR3: 700 - 1800MHZ saat hızı, 5.6 - 54.4Gb/saniye veri transfer hızı
» GDDR4: 1600 - 2400MHZ saat hızı, 64 - 156.6Gb/saniye veri transfer hızı

Yeni kartlarda kullanılan GDDR4 ram video bellek çeşitleri ile gpu lar çok hızlı bir şekilde kareleri kaydetme ve birleştirme yeteneklerine sahip hale gelmektedirler.

Video Bios: Anakart bios yapısına sahip bir biosta ekran kartı üzerinde bulunmaktadır. Ekran kartı biosu ile bilgisayar çalıştırıldıktan sonra ekran kartı başlarken üzerinde uygulanması gereken ayarlar (frekans, gerilim) buradan okunarak düzenlenir. Ekran kartı bios ayarları ile kartın performansı arttırılabilir yani anakartta işlemci üzerinde yapılan overclock çalışması burada ekran kartı işlemcisi - gpu üzerinde yapılabilmektedir.

RAMDAC: Ekran kartı üzerinde dijital sinyalleri analog sinyallere çeviren bir digital - analog çevirici bulunmaktadır. RAMDAC (Random Access Memory Digital-to-Analog) adı verilen bu sistem ile CRT monitörler için gerekli olan ve bu monitörlerde değişiklik gösteren yenileme süreleri için ayarlama özelliği sağlamaktadır.

Giriş Çıkış Üniteleri: Ekran kartının verileri işledikten sonra görüntü birimi olan monitörlere gerekli bilgiyi göndermesi için kullanılan çıkış birimleri (DVI, VGA, SVGA) portları bulunmaktadır. Bunların dışında bilgisayarı normal televizyona bağlamak için kullanılan S-Video (tv out) çıkışıda bulunmaktadır.

Bu özelliklerin dışında ekran kartları üzerinde birçok ufak modül daha bulunmaktadır. Örnek olarak nvidia G92s mimarisine sahip çekirdeği bulunan 9800GX2 128 adet stream processors - hareket işlemcisi bulunmaktadır. Ayrıca yeni nesil kartlarda çoklu birleştirme desteği ile aynı markanın 2 kartını uygun şekilde birleştirerek çok daha fazla performans sağlanmış olur bu teknolojiyi inceleyecek olursak;

NVIDIA SLI: SLI (Scalable Link Interface) teknolojisi nvidia kartları için geliştirilen iki kartı aynı anakart üzerine bağlayarak grafik işleme performansını çok büyük ölçüde arttırmaya yarayan bir yapıdır. İki ayrı fiziksel nvidia ekran kartı üst bağlantı ile bağlandıktan sonra yazılım ile gerekli ayarlamalar yapılarak tek bir ekran kartı gibi çalışma şekli göstermesine rağmen iki adet ekran kartının performansına yakın bir güç sunmaktadır. 

Aşağıdaki resimde nvidia sli bağlantı şekli çizilerek gösterilmiştir.

http://resim.sanalkurs.net/uploads/6_235.jpg

14 Aralık 2015 Pazartesi

BIOS VE CMOS NEDİR? ARASINDAKİ FARKLAR NELERDİR?

  BİOS


BIOS, PC'nizin çalışması için gereken temel yapı olarak özetlenebilir. Sadece okunabilir bellek (ROM) üzerine yazılmış bir yazılım olan BIOS, ana kartınızın özelliklerini yönetebilmeniz/ kullanabilmeniz, diğer donanımlar arasında bir bağ kurması için görev yapar.

Sadece Okunabilir Bellek" üzerinde olmasından dolayı, burada kalıcıdır. Kalıcı olmasının bir sebebi ise, her defasında PC'nizi açtığınızda BIOS’ UN işlem yapmasıdır. İşletim sisteminiz ile diğer donanımlarınız arasında bir bağ kurmaya olanak sağlar. Örneğin ses kartı, modem gibi parçaları üzerinde barındıran bir ana kart aldığınızda, ana kartınızın üzerine takılı olan aygıtların listesini işletim sisteminize BIOS verir. ana kart üzerinden desteklenen bir donanımı iptal ettiğimizde ise (örneğin, BIOS’ dan ana kartın ses özelliğini iptal ettik) işletim sisteminiz bu aygıtı artık görmeyecektir. Diğer taraftan, BIOS bir yazılım olduğundan, ana kartın dengeli performanslı çalışması için kullanıcılara ayar yapma olanağı sunuyor.

"BIOS, ana kartınızın özelliklerini ve üzerine takılı olan donanımların çalışması için gereken parametreleri, kullandığınız işletim sistemine aktaran, minik bir işletim sistemidir.

Yani bilgisayar açılırken hangi aygıtların hangi sıraya göre okunması gerektiğini, hangi kartların çalıştırılıp çalıştırılamayacağını veya hangi aygıta ne kadar gerilim verilmesi gerektiği gibi konularla birlikte daha birçok uygulamayı yapabilen bir parçadır.

Bioslar, EEPROM olarak adlandırdığımız hafıza entegrelerinin üstüne, anakart ile uyumlu çalışabilecek şekilde çeşitli yazılımların monte edilmesi sonucu oluşurlar.EEPROM (Electrically Erasable Programmable Read-Only Memory) türünde entegreler oluşturularak kullanılan biosların boyutları çok büyük değildir ve yeni nesil anakartlar da yönetilmesi gereken işlemlerin çoğalmasından dolayı daha büyük boyutlara sahip bioslar için Flash Bellek entegreleri kullanılmaktadır. Bu entegrelerin en büyük özelliği elektriksel sinyaller ile hafıza üzerinde değişiklik yapılabilmesidir. Aslında bu entegrelerde EEPROM yapısındadır..

Bios hafızasındaki bilgiler elektrik gittiği zaman bile silinmez. Aslında flash bellek yapısında olmasına rağmen bios içindeki bilgileri koruyan bir pil bulunmaktadır. Bu pil çıkarıldığında veya bios resetlendiğinde, kalıcı bölge ROM haricindeki veriler tekrar eski hallerine gelmektedir. Bu nedenle ayar bölgeleri RAM (Random Access Memory) gibi davranmaktadır.

En çok kullanılan BİOS markaları:

Award Bios
Ami Bios (American Megatrends Inc)
MR Bios (Microid Research Inc)
Phoenix Bios (Phoenix Technologies)

Bu bios çeşitlerini kullanan anakart üreticilerinden bazıları:

ABit,
AOpen,
Asus,
Biostar,
Epox,
GigaByte,
DFI,
IBM,
Intel,
Megastar,
Asrock,
MSI,
Toshiba.
Biosun Görevleri Nelerdir?
Başlangıç Sürücüsünü Ayarlar:
Bilgisayar açılırken hangi sürücünün önce okunması gerektiğini belirler. Normalde bu ayarda öncelikle hard disktir fakat bazı durumlarda first boot yani ilk sürücünün cd rom olarak belirlenmesi tercih edilir.

Parça Voltajlarını Ayarlar:
Bilgisayar üzerindeki işlemci, ram, ekran kartı, chipset, anakart ve daha birçok parçanın çalışma gerilimlerini biostan değiştirebiliriz. Örnek verecek olursak overclock yapılırken işlemci ve ram gibi parçaların voltajlarını yükseltmek gerekmektedir işte bu ayarları bios yapmaktadır.

FSB Hızlarını Ayarlar:
Bilgisayardaki parçaların FSB yani çalışma frekansları, başka bir değişle o parçanın çalışması için gerekli olan frekans değerlerini de bios ile değiştirebiliriz. Örnek olarak 66MHZ düzeyinde çalışan bir ekran kartının FSB değerini 69 yapabiliriz. Buradaki ama FSB hızı ile parçaları hızlandırmak dolayısıyla bilgisayarı hızlandırmaktır. En çok FSB ayarları değiştirilen parçalar İşlemci ve Ram dir.

Parçaları Açma-Kapamaya Yarar:
Mesela anakart üzerinde bulunan ses veya ethernet kartı gibi kartların aktifleştirilip pasifleştirilmesini sağlar. Bazı durumlarda bu kartları kullanmayabiliriz ve bunları kapatarak güç tasarrufu sağlarız.
 Çalışma İstatistiklerini Gösterir:
Bilgisayar çalışırken elde edilen, işlemci sıcaklığı, işlemci voltajı, diğer parça voltajları, anakart sıcaklığı, fsb hızları gibi birçok istatistiği bios menüsü altında görebiliriz.
 Başlangıç Ayarlamalarını Yapar:
Bilgisayar açılırken birçok temel bilgi ve ayarı bios üzerinden almaktadır. Bu ayarlamaları bios menüsü altında değiştirebilirsiniz. Ayrıca saat tarih gibi ayarlarda bios menüsünden yapılabilmektedir.
 Bios Menüsü Nasıl Açılır?

Genellikle üreticilerin birçoğu aynı yöntemi kullanmayı tercih etmişlerdir. Bilgisayarı açtıktan sonra sürekli Delete tuşuna basarak veya basılı tutarak bios menüsüne erişim sağlayabiliriz. Fakat bazı üreticiler farklı erişim yöntemleri sundukları için bunlarda bilgisayar açılırkenF1, F2, F10, ESCgibi tuşlara basmak gerekmektedir. Siz ilk olarak Delete tuşuna basarak açma işlemini gerçekleştirmeyi deneyiniz.

Bios Ayarları Nasıl Yapılır? 

Bios menüsüne giriş yaptıktan sonra ayarlamaları yapabileceğimiz ana menü karşımıza gelmektedir. Genelde menüler bir kaç çeşittir. Aşağıdaki resimde Phoenix Bios menüsü gözükmektedir.

Main:Basit ayarlamalar ve bilgilerin bulunduğu menü. Alt menüleri aşağıdadır.

System Time: Saat ayarını buradan yapabilirsiniz.
System Date: Tarih ayarını buradan yapabilirsiniz
Primary Master: Birinci bölümün ilk sürücüsü
Primary Slave: Birinci bölümün ikinci sürücüsü
Keyboard Features: Klavye ayarları buradan yapılmaktadır
System Memory: Bios değiştirilemez hafıza büyüklüğü
Extended Memory: Bios ek hafıza büyüklüğü
Advanced:Gelişmiş bios ayarları bu bölümde yapılmaktadır.  
  • Internal Mouse:  Dokunmatik mouse ayarı.
    LCD Panel View Expansion:  LCD monitörler için geliştirilmiş görüntü özelliği
    Silent Boot:  Açılış özellikleri buradan belirlenir. Logo açılışı, yazılı açılış ve siyah ekran açılışı olarak 3 bölüme ayrılır
    USB Operation Mode:  Usb hızınızı buradan ayarlayınız. USB2.0 ve 1.1 olmak üzere iki seçenek mevcut. Yeni anakartların hepsi usb2.0 standardına göre yapılmaktadır
    Remote Power On:  Lan üzerinden bilgisayarı açmanızı sağlamak
    Legacy USB Support:  Usb veri yolu desteği

    Security:Bios güvenlik ayarları bu bölümden yapılmaktadır.

Set Supervisor Password: Bu şifre ile bios ayar menüsüne sadece şifreyi bilen kullanıcılar girebilecektir. Normalde şifre yoktur
Set User Password: Bu şifre ise sadece menü erişim şifresidir. Bir kez girildikten sonra değişiklik yapmak için bir daha sorulmaz. Bu şifreden önce Supervisor şifresi belirlenmelidir. Bu şifre ile giriş yapıldığı zaman bazı menüler aktif olmayacaktır
Password on boot: Bu kısımda ise yukarıdaki iki şifreden herhangi biri girildiği zaman ve bu bölüm aktifleştirildiği zaman bilgisayar boot menüsüne girilmese bile açılırken bu şifreyi girmeden devam edemezsiniz. Bilgisayarı açmak için yukarıdaki oluşturduğunuz şifrelerden birini girmeniz yeterlidir
Fixed disk boot sector: Boot sektör virüslerine karşı koruma sağlamaktadır. Write Protect aktif iken koruma aktifleşir.
Boot
Bilgisayarın açılışı sırasında hangi sürücülerin hangi sıraya göre okunması gerektiğini bu bölüm belirler. Diskette Drive, ATAPI CD-ROM Drive, Network, Hard Drive gibi seçeneklere sahiptir. Bunlardan hangisinin önce başlamasını istiyorsak onu ilk sıraya taşımalıyız.

Bios Güvenliği
Bazı durumlarda bios lar işletim sisteminin çalışmalarından etkilenerek veya zararlı virüsler nedeniyle tahrip olabilmekte ve veri kayıpları yaşanabilmektedir. Bu gibi durumları önlemek için yeni nesi bios larda birçok güvenlik konulmuştur. Ayrıca işletim sistemindeki açıklarında birçoğu kapatılarak online erişim kısıtlanmıştır. Bunların haricinde veri kayıplarını engellemek için bazı anakart üreticileri dual bios adını verdikleri çift bios sisteminin devreye sokmaktadırlar.

Bu yöntem ile aynı anakartta aynı özelliklere sahip ikinci bir (backup bios) yedekleme biosu bulunmaktadır. Yapılan her ayar otomatik olarak bu biosa aktarılmaktadır. Eğer ana biosta bir sorun olursa ikinci bios devreye girerek üzerindeki yedeği ana biosa aktaracak ve sorun çözülecektir. Aşağıdaki resimde dual bios özelliğine sahip bir anakart ve ana bios (main bios) ile backup biosu gözükmektedir.
Bios şifresini unuttum ne yapmalıyım?

Yapmanız gereken bilgisayar kapalı ve fişi çekili iken bios pilini çıkarmanız ve 5 dakika bekledikten sonra tekrar takmanız olacaktır. Bu işlemden sonra bios ayarlarınız komple orjinal haline yani bios default hale dönecektir.


Biosu Ayarlarken Hata Yaptım Ne Yapmalıyım?

Yapmanız gereken bios menüsüne girmeniz ve Load Defaults bölümünü bularak bios defaults ayarlarına dönmeniz olacaktır. Bu ayarlamayı yaptıktan sonra değişiklikleri kaydedip çıkınız ve bilgisayarı yeniden başlatınız.
 CMOS
CMOS nedir ?


CMOS, uzun ismi Complimentary Metal Oxide Semiconductor olan bir bellek çeşidi. BIOS’un ayar ekranlarına girip yaptığınız değişiklikler, bu CMOS yongasına kaydediliyor. Sistem kapatıldığında yonganın içindeki bilgiler kaybolmasın diye de anakartınızın üzerinde bir pil var, bu pil CMOS yongasını yıllarca besleyebiliyor. Hani bazen kullanıcıların “BIOS, yaptığım sistem ayarlarını kaydetmiyor, sistem her açıldığında ayarlar sıfırlanıyor” şikayetlerini duyarsınız. İşte bu şikayetlerin nedeni ya CMOS’un arızalı olması, yada pilin bitmiş olması nedeni ile içine kaydedilen bilgileri unutması.

Kimi zaman kullanıcılara BIOS Setup’da yanlış bir ayar yaparlar ve sistemleri açılmaz olur. İşte o zaman “BIOS’u sıfırla” diye akıl veririz. Aslında önerdiğimiz şey BIOS’un sıfırlanması değil, bunu yapabilseydik sistemimiz çalışmaz olurdu. Burada kastedilen şey, BIOS ayarlarının kaydedildiği, az önce tanıttığımız CMOS’un içerdiği verileri sıfırlamak,sistemin varsayılan ayarlar ile açılmasını sağlamak.

Güncel anakartların üzerinde “CMOS Clear” yada “CLR RTC” gibi etiketlenmiş bir köprü bulunur, bu köprü genelde BIOS’un kayıtlı olduğu Flash ROM yongasının yakınındadır. Bu köprünün yerini bulmanın en kolay ve garantili yolu, anakartınızın kitapçığına başvurmaktır. Bu köprüyü kapattığınızda, yani jumper dediğimiz ufak parça yada bir tornavida ucu yardımızla içi ucu birleştirdiğinizde, CMOS’da kayıtlı tüm bilgiler gider, sisteme yaptığınız bütün ince ayarlar sıfırlanır.

CMOS lojik ailesi, mantık fonksiyonlarını oluşturacak şekilde birbirine bağlı her iki tip(hem n-kanallı hem p-kanallı) MOS elemanlarından oluşmaktadır.Temel devre aşağıdaki şekillerde gösterildiği gibi,p-kanallı bir transistörden ve n-kanallı ikinci bir transistörden oluşan bir tersleyicidir.

p-kanallı elemanın kaynak ucu Vdd düzeyinde, n-kanallı elemanın kaynak ucuda toprak düzeyindedir.Vdd değeri +3V ila +18V arasında herhangi bir değerde olabilir.Gerilim seviyeleri,alçak seviye için 0V,yüksek seviye içinde Vdd’dir.
CMOS’un çalışması şöyle özetlenebilir:
1. n-kanallı MOS,kapıdan-kaynağa gerilimi pozitif olduğu zaman iletir.
2. p-kanallı MOS,kapıdan-kaynağa gerilimi negatif olduğu zaman iletir.
3. Kapıdan-kaynağa gerilimiz sıfır olması durumunda her iki tip elemanda kapanır.

BIOS VE CMOS ARASINDAKİ FARKLAR:

CMOS

Verileri depolar
Pil ile desteklendiği sürece değişmez.
CMOS stup yazılımları ile değiştirile bilirler.
Ortalama 128 byte boyuta sahiptir.

BIOS

Yazılımları depolar.
Sistem kapanınca silinmez.
Özel “flaş”işlemi ile değiştirile bilir.
Ortalama 64KB boyuta sahiptir.

Hard Disk Nedir ? Nasıl Çalışır ?


Sabit Disk (Hard Disk) Nedir?


Sistem bellekleri (RAM) sakladıkları bilgileri PC’nizi kapattığınızda saklayamaz. Sistem belleklerinin bu özelliğinden dolayı güç kullanmadığı halde veri saklayabilecek donanımlara ihtiyacı vardır. İşte bu ihtiyacı sistemde sabit disk sürücüler karşılar. Sabit diskler bilgisayarınızı açtığınızda işletim sistemini ve diğer yazılımları sistem belleğine yükler ve kalıcı olarak saklamaya karar verdiğiniz bilgileri PC’niz kapalı bile olsa korumaya devam eder. Sabit diskler saklanması gereken verileri disk üzerinde manyetik değişim gerçekleştirerek yazarlar. Sabit diskleri incelerken mekanik kısım ve hareketli parça içermeyen elektronik kısım olarak ele almak yerinde olur. Hareketli parçalar sabit disk sürücülerinin çalışmasını engelleyen toz ve diğer etkenlerden korumak amacıyla havası izole edilmiş bir bölme içinde yer alır. Sabit disk sürücülerindeki hareketli parçalar mil, manyetik diskler, okuyucu/yazıcı kafalar, kafaların yerleştirildiği kollar ve kollara hareket veren sistemdir. Verilerin yazıldığı kısım ise disklerdir. Disklerin üzerine yazılan verinin yoğunluğu sabit disklerin veri saklama kapasitesini performansını olumlu yönde etkiler. Disklerin en önemli bölümleri diski oluşturan sert alt tabaka ve üstteki manyetik tabakadır. Bu önemli tabaka için üretici firmalar sabit disk tasarımlarında çeşitli materyaller kullanırlar.
Disk yüzeyindeki pürüzsüz düz tabaka için eski sabit disk sürücülerinde manyetik oksit kullanılırdı. Manyetik oksit şu an kullanılan ince manyetik film tabakasına göre daha kalın ve çabuk bozulan bir tabakaydı. Günümüzde ısıya dirençli ve daha ince disklerin yapılabilmesine imkan veren özellikleri açısından cam esaslı diskler alüminyum olanlara alternatif oluşturuyor. Artık manyetik tabakasının yerini filmsi ince manyetik tabakalar almış durumda. Sabit disk sürücülerinin en hassas mekanizmalarından birini kafaların diski çizmeden çok yakın biçimde okuma ve yazma yapabilmesi teşkil eder. Diskler mil üzerinde yüksek hızda dönmeye başladığında kaydırıcıların altından geçen hava akımı okutucu/yazıcı kafaların disklere sürtmeden havada asılı kalmasını sağlarlar. Disklerin üzerindeki manyetik yüzeye neredeyse değecek biçimde duran okuyucu/yazıcı kafa ile manyetik yüzey arasındaki mesafe günümüz sabit disk sürücülerinde 0.07 mm’den bile daha azdır. Kafaları disk üzerinde okunacak yada yazılacak bölgeye götüren ve çok hızlı çalışan kısım ise ‘Actuator’ adındaki kısımdır. Kafalar kaydırıcılara ve kaydırıcılar da kollara bağlı olmak üzere birlikte Actuator’a bağlıdırlar. Hoparlörlerdeki ses üreten manyetik bobine çok benzer biçimde çalışan Actuator adeta ses üreten bir bobin kadar hızlı biçimde kafaları diskler üzerinde içeri ve dışarı yönde hareket ettirir.
Hızla dönen diskler üzerinde okuyucu/yazıcı kafalar, mantık yani kontrol ünitesinden gelen sinyallere göre hareket ederler.
Mantık ünitesi yani elektronik kısım bilgisayarla sabit disk arasındaki veri alışverişini ve hareketli parçaların kontrolü görevini yürütür.

Hard diskin Çalışma Prensipleri

Verilerimizi kalıcı olarak saklamak için kullanılan bir saklama birimidir. Sabit disk döner bir mil üzerine sıralanmış, metal veya plastikten yapılma ve üzeri manyetik bir tabaka ile kaplı plakalar ve bu plakaların alt ve üst kısımlarında yerleşen okuma/yazma kafalarından oluşur. Veriler sabit diskteki bu manyetik tabakalar üzerine kaydedilir. Verilerin kaydedilmesinde mıknatıslanma mantığı kullanılır. Mıknatısın iki kutbu dijital olarak 1 ve 0 ‘ı temsil eder. Verilerimiz böylece küçük mıknatıslar halinde bu manyetik ortamlara yazılırlar. Bu manyetik tabakaların üstü dairesel çizgilerle örülüdür. Bunlara iz (track) denir. Sabit disk’te birden fazla plakalar üst üste dizilmiştir. Bu plakaların hem alt hem de üst tarafına bilgi yazılabilir. Herbir plaka üzerinde altlı-üstlü yerleşen ve herbirinin ortadaki mile uzaklığı aynı olan izlerin oluşturduğu gruba silindir ismi verilir. Sabit disk üzerinde herbir yüz bir kafa tarafından okunmaktadır. Bu nedenle kafa ve yüz aynı terime karşılık gelir. İz yapısını pasta dilimi şeklinde bölünmesiyle oluşan ve sabit disk üzerinde adreslenebilir en küçük alana denk gelen parçaya ise sektör (Sector) adı verilir ve bir sektörün barındırabileceği veri miktarı 512 byte uzunluğundadır. Bu sektör, kafa ve izler sabit diskte verinin adreslenmesi için kullanılırlar. Şuan adreslemede kullanılan iki yöntem vardır. Bunlardan ilki CHS olarak adlandırılan Cylinder-Head-Sector konumlarının verilmesi ile 3 boyutlu olarak dosyanın yerinin bulunması ikincisi ise LBA (Logical Block Adressing – mantıksal kütük adreslemesi) adı verilen tek boyutlu adresleme yöntemidir. Günümüzde kullanılan iki tip sabit disk arabirimi vardır. Bunlar IDE ve SCSI’dir.

IDE 

IDE (Integrated Drive Electronics) bilgisayarın anakartındaki veri yolu ile depolama aygıtları arasında kullanılan standart bir elektronik arabirimdir. IDE IBM’in 16 bitlik ISA yol sistemi tabanlıdır ama ayrıca diğer yol standartlarını kullanan yol sistemlerinde de kullanılabilir.Günümüzde satılan birçok bilgisayar IDE’nin gelişmiş versiyonu olan EIDE’yi (Enhanced IDE) kullanır. IDE kasım,1990’da ANSI tarafından bir standart olarak benimsendi. IDE’nin ANSI ismi ATA’dir (Advanced Technology Atachment). Normal şartlar bir IDE arabirim ile iki tane sabit diskin çalıştırılması mümkündür: Ancak iki entegre denetleyicisinin birinci pozisyonda olmak istemesini engellemek gerekir. Bunu yapmak için sürücülerden biri ana sürücü (Master Drive) diğeri de bağımlı sürücü (Slave Drive)’dır. Bu disk işlemlerinde açık bir hiyerarşi oluşturur. IDE’nin deenetleyici teknolojisinin artan isteklerine cevap vermekte yetersiz kalması nedeni ile EIDE’nin ortaya çıkmıştır. IDE denetleyicisinin üç temel sorunu vardı. 528 MB'’lık depolama üst sınırı vardı. Yani 528 MB’ın üstündeki diskler IDElerle kullanılamazlar. En çok iki disk desteği vardı. Yalnızca iki disk kullanılabilmekte idi. Ve CD-ROM gibi çevre birimlerine destek vermemekte idi. EIDE ile birlikte her bir disk için 8.4 GB’lık disk desteği vardır. Günümüzde bu sınır daha da üste çekilmiştir. 128 GB’a kadar diskler desteklenebilir. 4 tane IDE diski ve CD-ROM kullanılabilir. Bunun için de IDE1 ve IDE2 olarak iki tane arabirim konnektörü kullanılır. Birincil olana Primary ikincil olana da Secondary ismi verilir. Bir konnektörde iki tane disk ve benzeri aygıt kullanılabilir. Bunlar birbirinden Master ve slave olarak biribirinden ayrılır. Böylece bilgisayara takılan disk ve benzeri birimler Primary master, Primary Slave, Secondary Master ve Secondary Slave olarak isimlendirilir. Hiyerarşik düzünde aynen bu şekildedir. EIDE’lerle birlikte Ultra DMA kavramı ile karşılaşmaktayız. Ultra DMA bilgisayarın veriyi sabit diskten bilgisayarın veri yolları ile anabelleğe göndermede kullanılan bir protokoldür. ULTRA DMA/33 protokolü verileri çoğuşma modunda ve 33.3 MBps (Megabayt/saniye) hızında transfer eder. Bu bir önceki DMA arabiriminin iki katı kadar daha hızlıdır.Ultra DMA Sabit disk üreticisi olan QUANTUM ve chipset üreticisi olan INTEL tarafından geliştirildi. Bilgisayarınızın Ultra DMA’yı desteklemesi demek bilgisayarınızın daha hızlı açılması, yeni uygulamaları daha hızlı çalıştırması anlamına gelir. Ultra DMA 40 pinlik bir IDE arabirimi kablosu kullanır. Ultra DMA/33’den sonra Ultra DMA/66 çıktı. Ultra DMA/66 verilerin 66 MBps hızında iletilmesini sağlar. Bu bir önceki Ultra DMA moduna göre iki kat hızlıdır. Ultra DMA/66 80 pinlik IDE kablosu kullanılır. Ultra DMA’nın çoğuşma modunu desteklediği söylenmişti. Çoğuşma modu verilerin normalinden daha hızlı gönderildiği bir veri gönderme kipidir. Çoğuşma kipini gerçekleştiren birçok teknik bulunmaktadır. Veri yolunda, Örneğin çoğuşma modu, bir aygıtın yolun kontrolünü ele almasını ve diğer aygıtların bunu kesmemesini sağlayarak gerçekleştirilir. RAM’de ise Çoğuşma modu bir sonraki hafıza birimi kendisine ihtiyaç duyulmadan getirilerek yapılır. Bu disk cachlerinde kullanılan tekniğin aynısıdır. Böylece veriler daha hızlı iletilirler. 

Bütün çoğuşma modlarının sahip olduğu bir karakteristik geçici ve güçlendirilemeyen olmasıdır. Sınırlı zaman dilimlerinde ve özel şartlarda normalden daha hızlı veri transferi sağlarlar. 

SCSI 

Small computer System Interface’in kısaltılmış şeklidir. SCSI arabirimi seri ve paralel portlardan daha hızlı veri transfer oranı sağlar. (saniyede 80 Megabyte veri iletimi sağlayabilir). SCSI arabirimlere diskin dışında yazıcı, CD-ROM gibi çeşitli aygıtlar bağlanabilir. Bu yüzden SCSI basit bir arabirimden çok bir giriş/çıkış yoludur. SCSI arabirimi bir ANSI standardı olmasına rağmen çeşitli varyasyonları bulunmaktadır. Bu yüzden İki SCSI arabirimi birbiri ile uyumlu olmayabilir. Günümüzde kullanılan SCSI arabirimleri aşağıdadır.

SCSI-1 : 8 bitlik bir yol kullanır ve 4 MBps lik bir veri transfer hızını destekler.

SCSI-2 : SCSI-1 ile aynıdır, fakat 50 pinlik konnektörler kullanırlar. ve birden fazla aygıtın bağlanmasına izin verirler.

Wide SCSI : 16 bitlik veri transferini desteklemek için daha geniş bir kablo kullanırlar.

Fast SCSI : 8 bitlik yol kullanırlar, fakat 10 MBps’lik veri transferini desteklemek için saat hızını ikiye katlarlar.

Fast wide SCSI : 16 bitlik yol kullanır ve 20 Mbpslik veri transfer hızını destekler.

Ultra SCSI : 8-bitlik yol kullanır ve 20 MBps’li veri transfer hızını destekler.

SCSI-3: 16 bitlik yol kullanır ve 40 MBps’lik veri transfer hızını destekler. Ayrıca Ultra Wide SCSI de denir.

Ultra2 SCSI: 8 bitlik yol kullanır ve 40 MBps’lik veri transfer hızını destekler.

Wide Ultra2 SCSI: 16 bitlik bir yol kullanır ve 80 MBps’lik veri transfer hızını destekler.

SCSI aygıtların dürümlerine göre 15 aygıta kadar sisteme bağlayabilir. SCSI’ler IDE arabirimlerinden farklı olarak rasgele erişim yöntemini kullanırlar. IDE’ler ise sıralı erişim yöntemini kullanırlar. SCSI arabirimleri IDE’lerden daha hızlıdırlar. Ancak daha da pahalıdırlar. Dünya piyasının yaklaşık %10’unda varlar. IDE’ler ise ucuz olmaları ve artık anakart üzerinde tümleşik olarak gelmeleri sebebi ile daha fazla tercih edilmiştir. Bir sabit diskin kapasitesi şu şekilde hesaplanır.

Silindir sayısı*Sektör Sayısı*kafa sayısı*512’dir

1024 silindir, 256 kafa ve 63 sektör parametrelerine sahip bir sabit diskin kapasitesi: 1024*256*63*512=845571864 Byte’dır. Bu da yaklaşık 8.4 Gigabyte’dır. Sabit diskler ile gelen önemli bir kavram da partisyon kavramıdır. Partisyon kabaca diskin üzerinde oluşturulmuş bölümlerdir. Bir diskte sadece bir partisyon olabileceği gibi birden fazla da partisyon olabilir. Bir partisyon hangi amaç ile oluşturulmuş olursa olsun o partisyona ulaşım yapacak işletim sistemine uygun bir dosya sistemi ile biçimlendirilmelidir. Bu genellikle işletim sisteminin sorunudur ve işletim sistemi birden fazla dosya sistemini destekleyebilir. Partisyonların isimlendirilmesine gelince ilk olarak primary master konumundaki partisyon c’den itibaren isim almaya başlar. Sonra master diskinizde birden fazla partisyon var ise onlar isimlendirilmeye başlar. Örneğin Primary master’daki disk ikiye bölünmüş ise birincisi C: ikincisi ise D: ismini alır. Buradaki bölümleme işlemi mantıksaldır. Eğer, ikinci bir sabit disk var ise bu disk fiziksel olduğu için D: harfini alır. Mantıksal olarak bölümlenmiş diskin ikinci bölümü ise E: harfini alır. Dosya sistemlerinde yaygın olanlarından biraz bahsedelim

FAT 

File Allocation Table – Türkçeye çevirmek gerekir ise Dosya Atama Tablosu.Bu sistemde partisyon herbiri belli miktarda sektör içeren cluster isimli parçalara ayrılır. Ve hangi dosyaların bu cluster parçalarından hangilerine yerleştiği, hangi cluster parçalarının boş, hangilerinin dolu olduğu gibi bilgiler FAT üzerine yazılır. İşletim sistemi de herhangi bir dosyaya erişim yapmak istediğinde dosyayı bulmak için FAT üzerine yazılan bu bilgilerden faydalanır. Her ihtimale karşı sabit disk üzerinde bir kopyası bulundurulur.



FAT16 

DOS, Windows3.1 ve OSR2 sürümü öncesi Windows95’in kullandığı dosya sistemidir. Eski bir dosya sistemi olduğu için birtakım dezavantajları ve eksiklikleri vardır. Bunlardan bir tanesi kök dizinin (root) sınırlandırılmış olmasıdır. FAT16 sisteminde açılıştaki primary partisyona ait root dizini, FAT tablosu ve boot sektörü cluster içinde yer almazlar ve sayısı belli olan sıralı sektörlerde tutulurlar. Bu sayının belli olması kök dizinine yapılacak eklentilerin belli bir sınırı olması sonucunu doğurur. Kısacası altdizin istenildiği kadar uzatılabilmekle birlikte kök dizinde belli uzunlukta girişle sınırlandırılmıştır. İkincisi FAT16 dosya sisteminde adresleme 16 bit olduğundan adreslenebilecek maksimum cluster sayısı 65525’tir ve bu clusterların boyutu 32 KB olabilir. (aslında cluster sayısı 65536 olmalıdır. Ama bazıları özel amaçlar için tutulur.) bu da bizi FAT16’da kullanılan bir partisyonun 2 GB’dan daha büyük olmayacağı sonucuna götürür. Üçüncüsü FAT16 elindeki boş sabit diski ya da partisyon alanının bir şekilde elindeki clusterlara dağıtmak zorundadır. Bu nedenle sabit diskin boyutu büyümeye başladıkça cluster’ın boyutu da büyür. Örneğin 1 MB’lık bir dosya birçok cluster üzerine sıralanıp yerleşirken 10KB uzunluğundaki tek bir dosya bir cluster’ı kaplar. Bu durumda özellikle disk boyutu 1-2GB arasında iseFAT16 cluster boyutu 32 KB olacaktır ve cluster üzerinde 10KB’lık dosyadan arta kalan 22 KB’lık boşluk değerlendirilemeyerek boşa gidecektir. Özellikle çok miktarda ufak dosya barındıran sabit disklerde bu durum bolca olur. 

FAT32 

Windows95 OSR2, Windows98, Windows2000 ve Linux tarafından tanınan ve FAT16’dan daha gelişmiş bir dosya sistemidir. İlk olarak FAT32’de herhangi bir kök dizin sınırlaması yoktur. İkinci olarak FAT32, FAT16’daki 16 bitlik adresleme yerine 32 bitlik adresleme kullanır. Bu da 2 TB’a kadar olan disklerin tanınmasını sağlar. Üçüncü olarak FAT32 cluster boyutunu azaltarak boş alan israfını azaltır.

RAM HAKKINDAKİ

RAM (Random Access Memory - Rasgele Erişilebilir Hafıza)
RAM, bilgisayarınızda çalışan program verilerinin, hızlı erişebilirliğini arttırmak için bilgisayar sisteminin hafızasında tutulması işine yarar. Bilgisayar sistemleri cihazlarında hafıza kelimesi çeşitli anlamlar taşıyabilir. Sabit diskte bir hafızadır, RAM da bir hafızadır. Sabit diskte veriler bilgisayar sistemini kapattığınızda da kalır. RAM hafıza ise elektrik kesildiğinde sıfırlanır ve veriler kayıt altında tutulmaz.

RAM, sabit diske göre tartışılmaz şekilde hızlıdır. Bu yüzden hızlı bir bilgisayar sistemi, RAM hızının ve kapasitesinin büyüklüğü ile direk ilintilidir. RAM kapasitesi yüksek bir makinede açtığınız 10 farklı program arasında geçiş yapmanız RAM kapasitesi düşük olana göre daha hızlı olacaktır. Çünkü yüksek RAM da program ile ilgili tutulabilecek veriler için daha fazla yer olacaktır. RAM da yer kalmadığında bu bilgiler makinenizin sabit diski üzerinden yürütülmeye başlanır.

DRAM (Dynamic Random Access Memory - Dinamik Rasgele Erişilebilir Hafıza)
RAM aslında DRAM ın en genel bilinen ismidir. 

FPM DRAM (Fast Page Mode DRAM - Hızlı Sayfalama Modlu RAM)
FPM DRAM bellekte, 30pin veya 72 pin, 5Volt'luk gerilim çekimi söz konusudur.

EDO RAM (Extended Data Out - Genişletilmiş Veri Çıkışlı RAM)
EDO RAM bellekte, 72 pin ve 168 pin, 5Volt'luk ve 3.3Volt'luk gerilim çekimi söz konusudur.

SDRAM (Synchronous Dynamic RAM - Senkronize Dinamik RAM) 
Aslında DRAM ın bir türevidir, özelliği makinenizin işlemcisinin çalışma hızına göre kendini senkron çalıştırabilmesidir. Aynı zamanda işlemcinin veri birikimi için veri yolundan işlemcinin oku ve yaz komutlarınada karşılık verebilir. Yani anlayacağınız işlemcinin komut hafızası doldumu SDRAM dan yardım alabiliyor. Bu da işlemcinin iş kuyruğunu uzatmasına yardımcı oluyor demek.

SDR SDRAM (Single Data Rate SDRAM - Tek Veri Oranlamalı SDRAM)
SDRAM ın orjinal ve uzun yazım biçimini ifade eder. SRAM bellekler 168 ayak pini sayısına, 3.3Volt gerilim çekimine, 66Mhz, 100Mhz, 133Mhz veriyolu hızına sahip şekilde üretilmişlerdir.

Veri transfer hızı geliştirilmiş ve veri yolu genişliği ikiye katlanmış olan geliştirilmiş SDRAM dır. DDR SDRAM larda 184 pin ayak iğne sayısı ve 2.5V luk gerilim çekimi söz konusudur.

Bu DDR SDRAM ların ikinci nesil ürünüdür. DDR SDRAM lardan biraz daha farklı bir sinyal yapısına ve daha az elektrik tüketimine sahip bir mühendisliği vardır. Tabi farklı sinyal yapısı ürünüde farklı kılmış ve ana kart ile olan bağlantı ayaklarında bir artışa neden olmuştur. Buda DDR SDRAM lerde 184 pin olan ayak sayısını 240 pin adete yükseltmiştir. Daha az elektrik tüketiminden kastımız 2.5Volt'luk gerilim çekiminin 1.8Volt'a düşürülmüş olmasıdır. Bu fazla bir fark değil gibi gözüksede, RAM ın çalışma performansını doğrudan etkileyen çok büyük bir farktır. Ayrıca daha az voltaj daha soğuk çalışabilme demektir.

DDR3 SDRAM
DDR3 SDRAM in bir önceki nesilden farkı, daha fazla veri genişliği kullanabiliyor olması, 90mm üretim teknolojisinden dolayı daha az elektrik tüketiyor olması ve işlem tampon bölgesinin ikiye katlanması sonucu daha hızlı reaksiyon sürelerine sahip olmasıdır. DDR SDRAM lerin 2,5 Volt ve DDR2 SDRAM'lerin 1,8 Volt'luk kaynak gerilimi gereksinimlerine karşın DDR3 SDRAM’ler 1,5Volt’luk gerilim gereksinimleriyle DDR2'lerden %30 daha az güç harcarlar. DDR3 SDRAM’ler ve DDR2 SDRAM’ler aynı büyüklükte ve 240 pin olmak üzere aynı sayıda iğneye sahipken, elektriksel olarak uyuşmazlar ve çentikleri farklı yerlerdedir. Daha az elektrik tüketiyor dedik, işte bir önceki nesillerin 1.8V elektrik ihtiyacı vardı, bu nesil 1.5V ile çalışıyor, haliyle daha az ısınıyorlar. Daha az voltaj ile amaç enerji sarfiyatını azaltarak, özellikle notebook/mobil bilgisayar sistemleri cihazlarının pil ömrünü uzatmaktır.


RDRAM (Rambus DRAM)
Rambus adında bir firmanın ürettiği bir DRAM tipidir. Paket tabanlı komut protokolu, komut veri akış yolu, veri akış yolu, düşük voltaj ihtiyacı, yüksek ulaşabilirlik hızları gibi özellikleri vardır, fakat pek tutunamadı. RDRAM bellekte 184 pin, 2.5 Volt gerilim söz konusudur.


SIMM (Single Inline Memory Module)
RAM ın Mainboard (Anakart ) üzerine montajının yapıldığı soketin adıdır. SIMM soketin iki tipi vardır. SIMM modüllerde 72 pin ayağı, 30 pin ayağı olan iki soket tipi vardır, EDO ve FPM bellekleri monte etmek için kullanılırlar.

DIMM (Dual Inline Memory Module)
SIMM in çalışma hızının 64 bit hale getirilmiş şeklidir. DIMM de toplam 72 bağlantı ayağı vardır. 36 sı bir tarafta, 36 sı diğer taraftadır. DIMM soketler 168 pin, 184 pin, 240 pin yapıda olabilirler, SDR, DDR, DDR2, DDR3 bellekleri monte etmek için kullanılırlar, aynı pin ayağına sahip RAM bellekler aynı pin yapıda DIMM sokete oturmazlar çünkü RAM belleklerdeki çeltik noktaları DIMM modüllerdeki çeltik noktaları ile uyuşmayacaktır. 

SODIMM (Small Outline DIMM)
SODIMM soketler notebooklarda kullanılmak için dizayn edilmiştir, DIMM modüller ile aynı özelliklere sahip fakat boyut olarak daha küçüktürler. 72 pin SODIMM 32 bit ve 144 pin SODIMM, 200 pin ve 204 pin SODIMM modüller 64bit destekler.
FPM DRAM - EDO DRAM SODIMM 72-pin (72-pin SIMM dan farklıdır FPM ve EDO SIMM bellek takılamaz yani)
SDR SODIMM 100 pin 144 pin 
DDR1 SODIMM 200 pin 
DDR2 SODIMM 200 pin 
DDR3 SODIMM 204 pin 

MicroDIMM
Dizüstü bilgisayar sistemleri için MicroDIMM modüller ve micro RAM çeşitleri üretilmiştir. 
SDR MicroDIMM 144 pin, 
DDR1 MicroDIMM 172 pin, 
DDR2 MicroDIMM 172 pin
DDR3 MicroDIMM 214 pin
DDR2 MiniDIMM 244 pin 

RIMM
RDRAM bellekler için RIMM soketler 184 pin, 232 pin iğneye sahiplerdir.

SORIMM 
Dizüstü RDRAM için SORIMM soketler 160 pin iğneye sahiplerdir.

Registered Memory [Buffered Memory]
Register memory nin özelliği, hafızaya atılan verilerin yerlerinin tutulduğu bir index tablosunun hafızanın belli ve küçük bir kısmında tutularak adreslenmesi demektir. Bu tanımı donanım mühendisleri ve low level programcıların bilmesi yeterli olacaktır. Yani kısaca şöyle diyebiliriz, hafızada tutulacak bilgilerin girişi için bir program tetikte bekleyip gelenlerin yerlerini hafızasına kayıt ediyor çıkanları o hafızadaki adreslerden siliyor.

Bu tip hafızalar diğerlerine göre biraz daha yavaş calışırlar. Çünkü bilgi istekleri önce o az önce bahsettigim programın hafızasında kontrol edilir ve eğer varsa ilgili yere yönlendirilir, yoksa gönderilmez. Bundan dolayı var olan verilere ulaşmak iki arama operasyonu gerektirdiğinden biraz daha yavas işler. Bazı sistemler bu tip RAM ları zorunlu kılmıştır bazıları ise kullanmayı reddetmektedir. Ama son zamanlarda üretimde olan anakartların bir çoğu size bu ikisi arasında seçim şansı tanımaktadır. 

UnRegistered Memory [Unbuffered Memory]
Unregistered Memory de yukarıda anlattığımız gibi bir ön kontrol yoktur. Hafızadan istekde bulunulduğunda veriyi kayıtlı tüm verilerin içinde arar. Eğer bilgi varsa vardır, yoksa yoktur.

ECC Memory (Error Correction Code Memory)
Yani bu tip hafızalar oluşabilecek hafıza hatalarının bir kısmını kendi kendine düzeltebilecek bir yapıya sahiptirler. Bir ECC Memory 64-bit lik bir hafıza bloğundaki bir hatayı düzeltebilir. Aslında 64-bit hafıza bloğundaki bir çok hatayı bulabilir ama sadece 1 hatayı düzeltebilir. FPM ve EDO belleklerde hata kontrol teknolojisi parity (eşlik) olarak geçer

Peki hafıza içinde hata nasıl oluşur? Biliyorsunuz ki bu chipler elektronik bileşenlerdir. Bir elektronik maddenin içindeki ayaklar elektrik akımı ile açılıp kapanır eğer ortamda fazlaca manyetik alan var ise bu ayakların açılıp kapanmasında yanlışlıklar olabilir. 

Bu manyetik alanlar; Kozmik ışınlar, alfa ışınları, Radyo dalgaları, statik elektrik atlamaları, enerji sorunları, makine içindeki donanımların oluşturabileceği bir aksaklık, sistem çalışma saatinin yanlış ayarlanmış olması 

Non-ECC Memory (None Error Correction Code Memory)
Hafıza hatalarını denetleyen bir kontrol yapısı içermezler.

Registered ECC Memory
Hem registered ile ön kontrol hemde ECC ile hata düzeltme yapısına sahip bellek teknolojisidir. 

Full Buffered ECC Memory
Registered ECC Memory lerin sunucu tipli makinelerde daha etkin kullanılması için daha geliştirilmiş bir teknikle hata payını minumuma indirmeyi amaçlayan teknolojidir. Çünkü sunucu makineler bilginin doğruluğunu garanti etmek zorundadırlar. Ama evde kullanılan makinelerde örneğin oyun makinelerinde bu tip hafızanın kullanılması gereksiz performans kaybına neden olacaktır.

CAS Latency (Column Address Strobe Latency)
CAS (Column Adress Strobe); Bilginin kayıtlı olduğu sütuna ulaşılırken yaşanan gecikmedir. 
RAS (Row Address Strobe); Aranan bilginin kayıtlı olduğu dizeye ulaşırken yaşanan gecikmedir.
RAS-to-CAS; Bilginin var olduğu dizeden sütuna geçerken yaşanan gecikmedir.
CAS Latency DRAM hafıza içinde bulunan bilgiye ulaşabilmek için gerekli olan zaman döngüsüdür. Örneğin CAS3 tipli bir hafızanın, hafızadaki bilgiye ulaşabilmek için 3 zaman döngüsüne ihtiyacı vardır. CAS2 de aynı işi halledebilmek için 2 zaman döngüsüne ihtiyaç vardır. Zaman döngüsü hafıza içindeki veriye ulaşmak için yapılacak işlemleri belirtir, CAS3 tipli bir DRAM hafızanın veriye ulaşmak için yapacağı işlemler şunlardır; Hafızanın takıldığı anakart soketini bulmak, Hafıza satırını ve sonucunda satır numarasını bulmak, Hafıza sütununu ve sonucunda sütün numarasını bulmak. Sonucunda elimize bir satır, bir sütun bilgisi geçmiş oluyor. Bu iki verinin kesiştiği yer verinin olduğu yerin adresidir.

Virtual Memory
Virtual Memory makinenizde bulunan işletim sisteminin, bilgisayarınızın hafızasında yer kalmadığında sabit disk üzerinde bu RAM a ait olan verileri saklayacağı bir dosyayı oluşturması ve her an ulaşıma hazır tutması demektir.

Windows sistemlerde Page File, Linux sistemlerde ise SWAP denilen partion(sabit disk bölümünün) alanının adıdır. Genelde bu ayarlar işletim sistemi kurulurken, otomatik olarak sistem hafızanızın boyutuna göre ayarlanır. Ama daha sonrasında ekleyeceğiniz hafıza modülleri ile bu dosyaların boyutlarının büyütülmesi gerekebilir. İdeal bir Virtual Memory boyutu, makinenizde bulunan hafızanın 2 katı boyutunda olmalıdır. Örneğin makinenizde 2GB RAM varsa bu dosyanın boyutu 4GB olabilir genelde bu işlem işletim sistemi yönetimine bırakılır.

SRAM (Static Random Access Memory - Durağan Rasgele Erişilebilir Hafıza)
Bu SRAM denilen şey işlemcilerde CACHE diye çağırdıkları hafıza tipine denk gelmektedir. L2 cache buna bir örnektir. Bu tip ramlar DRAM a göre çok daha hızlı çalışırlar ama kullanım alanları sınırlıdır.

SRAM ın çeşitleri
Asynchronous Static RAM
Synchronous Burst Static RAM
Pipeline Burst Static RAM

NVRAM (Non Volatile Random Access Memory - Kalıcı Rasgele Erişilebilir Bellek)
Bu RAM lar şu elektronikçilerden veya bilgisayarcılardan aldığınız Flash Bellekler de kullanılan RAM lardır. Bu tip RAM lara veriler yazıldıktan sonra elektrik kesilse bile veriler kaybolmaz.

Video RAM
Video RAM, RAM ekran kartlarında kullanıldığında bu şekilde adlandırılır. 

Flash Memory
Flash Memory, elektrik olmadığında da verileri hafızasında tutabilen bir yapıya sahiptir. Aslında Flash Memory ler EPROM un bir çeşitidir. Tek fark bunlara veri yazımıda yapılabiliyor olmasıdır. 

EPROM (Erasable Programmable Read Only Memory)
Bu tip hafızalarda elektrik kesintisinde bilgi kaybolmaz, hafızanın içi temizlenip yeniden programlanabilir bir yapıya sahiptir. Ama sadece okunabilir şekilde çalışır, dinamik bir yazma işlemi gerçekleştirilemez. Makinelerimizde kullanılan anakartların BIOS (Basic Input Output System) sisteminde, yani bilgisayarın açılması ve gerekli donanımları anakartın tanıması için kullanılan küçük yazılım, işte bu EPROM içinde tutulmaktadır. Bir EPROM veriyi uzun bir süre boyunca saklayabilir.

RAM (Random Access Memory - Rasgele Erişilebilir Hafıza)

RAM, bilgisayarınızda çalışan program verilerinin, hızlı erişebilirliğini arttırmak için bilgisayar sisteminin hafızasında tutulması işine yarar. Bilgisayar sistemleri cihazlarında hafıza kelimesi çeşitli anlamlar taşıyabilir. Sabit diskte bir hafızadır, RAM da bir hafızadır. Sabit diskte veriler bilgisayar sistemini kapattığınızda da kalır. RAM hafıza ise elektrik kesildiğinde sıfırlanır ve veriler kayıt altında tutulmaz.

RAM, sabit diske göre tartışılmaz şekilde hızlıdır. Bu yüzden hızlı bir bilgisayar sistemi, RAM hızının ve kapasitesinin büyüklüğü ile direk ilintilidir. RAM kapasitesi yüksek bir makinede açtığınız 10 farklı program arasında geçiş yapmanız RAM kapasitesi düşük olana göre daha hızlı olacaktır. Çünkü yüksek RAM da program ile ilgili tutulabilecek veriler için daha fazla yer olacaktır. RAM da yer kalmadığında bu bilgiler makinenizin sabit diski üzerinden yürütülmeye başlanır.

DRAM (Dynamic Random Access Memory - Dinamik Rasgele Erişilebilir Hafıza)

RAM aslında DRAM ın en genel bilinen ismidir. 

FPM DRAM (Fast Page Mode DRAM - Hızlı Sayfalama Modlu RAM)

FPM DRAM bellekte, 30pin veya 72 pin, 5Volt'luk gerilim çekimi söz konusudur.

EDO RAM (Extended Data Out - Genişletilmiş Veri Çıkışlı RAM)

EDO RAM bellekte, 72 pin ve 168 pin, 5Volt'luk ve 3.3Volt'luk gerilim çekimi söz konusudur.

SDRAM (Synchronous Dynamic RAM - Senkronize Dinamik RAM) 

Aslında DRAM ın bir türevidir, özelliği makinenizin işlemcisinin çalışma hızına göre kendini senkron çalıştırabilmesidir. Aynı zamanda işlemcinin veri birikimi için veri yolundan işlemcinin oku ve yaz komutlarınada karşılık verebilir. Yani anlayacağınız işlemcinin komut hafızası doldumu SDRAM dan yardım alabiliyor. Bu da işlemcinin iş kuyruğunu uzatmasına yardımcı oluyor demek.

SDR SDRAM (Single Data Rate SDRAM - Tek Veri Oranlamalı SDRAM)

SDRAM ın orjinal ve uzun yazım biçimini ifade eder. SRAM bellekler 168 ayak pini sayısına, 3.3Volt gerilim çekimine, 66Mhz, 100Mhz, 133Mhz veriyolu hızına sahip şekilde üretilmişlerdir.
DDR SDRAM (Double Data Rate SDRAM Çift Veri Oranlamalı SDRAM)

Veri transfer hızı geliştirilmiş ve veri yolu genişliği ikiye katlanmış olan geliştirilmiş SDRAM dır. DDR SDRAM larda 184 pin ayak iğne sayısı ve 2.5V luk gerilim çekimi söz konusudur.

DDR2 SDRAM


Bu DDR SDRAM ların ikinci nesil ürünüdür. DDR SDRAM lardan biraz daha farklı bir sinyal yapısına ve daha az elektrik tüketimine sahip bir mühendisliği vardır. Tabi farklı sinyal yapısı ürünüde farklı kılmış ve ana kart ile olan bağlantı ayaklarında bir artışa neden olmuştur. Buda DDR SDRAM lerde 184 pin olan ayak sayısını 240 pin adete yükseltmiştir. Daha az elektrik tüketiminden kastımız 2.5Volt'luk gerilim çekiminin 1.8Volt'a düşürülmüş olmasıdır. Bu fazla bir fark değil gibi gözüksede, RAM ın çalışma performansını doğrudan etkileyen çok büyük bir farktır. Ayrıca daha az voltaj daha soğuk çalışabilme demektir.

DDR3 SDRAM

DDR3 SDRAM in bir önceki nesilden farkı, daha fazla veri genişliği kullanabiliyor olması, 90mm üretim teknolojisinden dolayı daha az elektrik tüketiyor olması ve işlem tampon bölgesinin ikiye katlanması sonucu daha hızlı reaksiyon sürelerine sahip olmasıdır. DDR SDRAM lerin 2,5 Volt ve DDR2 SDRAM'lerin 1,8 Volt'luk kaynak gerilimi gereksinimlerine karşın DDR3 SDRAM’ler 1,5Volt’luk gerilim gereksinimleriyle DDR2'lerden %30 daha az güç harcarlar. DDR3 SDRAM’ler ve DDR2 SDRAM’ler aynı büyüklükte ve 240 pin olmak üzere aynı sayıda iğneye sahipken, elektriksel olarak uyuşmazlar ve çentikleri farklı yerlerdedir. Daha az elektrik tüketiyor dedik, işte bir önceki nesillerin 1.8V elektrik ihtiyacı vardı, bu nesil 1.5V ile çalışıyor, haliyle daha az ısınıyorlar. Daha az voltaj ile amaç enerji sarfiyatını azaltarak, özellikle notebook/mobil bilgisayar sistemleri cihazlarının pil ömrünü uzatmaktır.

RDRAM (Rambus DRAM)


Rambus adında bir firmanın ürettiği bir DRAM tipidir. Paket tabanlı komut protokolu, komut veri akış yolu, veri akış yolu, düşük voltaj ihtiyacı, yüksek ulaşabilirlik hızları gibi özellikleri vardır, fakat pek tutunamadı. RDRAM bellekte 184 pin, 2.5 Volt gerilim söz konusudur.

SIMM (Single Inline Memory Module)

RAM ın Mainboard (Anakart ) üzerine montajının yapıldığı soketin adıdır. SIMM soketin iki tipi vardır. SIMM modüllerde 72 pin ayağı, 30 pin ayağı olan iki soket tipi vardır, EDO ve FPM bellekleri monte etmek için kullanılırlar.


DIMM (Dual Inline Memory Module)

SIMM in çalışma hızının 64 bit hale getirilmiş şeklidir. DIMM de toplam 72 bağlantı ayağı vardır. 36 sı bir tarafta, 36 sı diğer taraftadır. DIMM soketler 168 pin, 184 pin, 240 pin yapıda olabilirler, SDR, DDR, DDR2, DDR3 bellekleri monte etmek için kullanılırlar, aynı pin ayağına sahip RAM bellekler aynı pin yapıda DIMM sokete oturmazlar çünkü RAM belleklerdeki çeltik noktaları DIMM modüllerdeki çeltik noktaları ile uyuşmayacaktır. 

SODIMM (Small Outline DIMM)

SODIMM soketler notebooklarda kullanılmak için dizayn edilmiştir, DIMM modüller ile aynı özelliklere sahip fakat boyut olarak daha küçüktürler. 72 pin SODIMM 32 bit ve 144 pin SODIMM, 200 pin ve 204 pin SODIMM modüller 64bit destekler.
FPM DRAM - EDO DRAM SODIMM 72-pin (72-pin SIMM dan farklıdır FPM ve EDO SIMM bellek takılamaz yani)
SDR SODIMM 100 pin 144 pin 
DDR1 SODIMM 200 pin 
DDR2 SODIMM 200 pin 
DDR3 SODIMM 204 pin 

MicroDIMM

Dizüstü bilgisayar sistemleri için MicroDIMM modüller ve micro RAM çeşitleri üretilmiştir. 
SDR MicroDIMM 144 pin, 
DDR1 MicroDIMM 172 pin, 
DDR2 MicroDIMM 172 pin
DDR3 MicroDIMM 214 pin
DDR2 MiniDIMM 244 pin 

RIMM

RDRAM bellekler için RIMM soketler 184 pin, 232 pin iğneye sahiplerdir.

SORIMM 

Dizüstü RDRAM için SORIMM soketler 160 pin iğneye sahiplerdir.

Registered Memory [Buffered Memory]

Register memory nin özelliği, hafızaya atılan verilerin yerlerinin tutulduğu bir index tablosunun hafızanın belli ve küçük bir kısmında tutularak adreslenmesi demektir. Bu tanımı donanım mühendisleri ve low level programcıların bilmesi yeterli olacaktır. Yani kısaca şöyle diyebiliriz, hafızada tutulacak bilgilerin girişi için bir program tetikte bekleyip gelenlerin yerlerini hafızasına kayıt ediyor çıkanları o hafızadaki adreslerden siliyor.

Bu tip hafızalar diğerlerine göre biraz daha yavaş calışırlar. Çünkü bilgi istekleri önce o az önce bahsettigim programın hafızasında kontrol edilir ve eğer varsa ilgili yere yönlendirilir, yoksa gönderilmez. Bundan dolayı var olan verilere ulaşmak iki arama operasyonu gerektirdiğinden biraz daha yavas işler. Bazı sistemler bu tip RAM ları zorunlu kılmıştır bazıları ise kullanmayı reddetmektedir. Ama son zamanlarda üretimde olan anakartların bir çoğu size bu ikisi arasında seçim şansı tanımaktadır. 

UnRegistered Memory [Unbuffered Memory]

Unregistered Memory de yukarıda anlattığımız gibi bir ön kontrol yoktur. Hafızadan istekde bulunulduğunda veriyi kayıtlı tüm verilerin içinde arar. Eğer bilgi varsa vardır, yoksa yoktur.

ECC Memory (Error Correction Code Memory)

Yani bu tip hafızalar oluşabilecek hafıza hatalarının bir kısmını kendi kendine düzeltebilecek bir yapıya sahiptirler. Bir ECC Memory 64-bit lik bir hafıza bloğundaki bir hatayı düzeltebilir. Aslında 64-bit hafıza bloğundaki bir çok hatayı bulabilir ama sadece 1 hatayı düzeltebilir. FPM ve EDO belleklerde hata kontrol teknolojisi parity (eşlik) olarak geçer

Peki hafıza içinde hata nasıl oluşur? Biliyorsunuz ki bu chipler elektronik bileşenlerdir. Bir elektronik maddenin içindeki ayaklar elektrik akımı ile açılıp kapanır eğer ortamda fazlaca manyetik alan var ise bu ayakların açılıp kapanmasında yanlışlıklar olabilir. 

Bu manyetik alanlar; Kozmik ışınlar, alfa ışınları, Radyo dalgaları, statik elektrik atlamaları, enerji sorunları, makine içindeki donanımların oluşturabileceği bir aksaklık, sistem çalışma saatinin yanlış ayarlanmış olması 

Non-ECC Memory (None Error Correction Code Memory)

Hafıza hatalarını denetleyen bir kontrol yapısı içermezler.

Registered ECC Memory

Hem registered ile ön kontrol hemde ECC ile hata düzeltme yapısına sahip bellek teknolojisidir. 

Full Buffered ECC Memory

Registered ECC Memory lerin sunucu tipli makinelerde daha etkin kullanılması için daha geliştirilmiş bir teknikle hata payını minumuma indirmeyi amaçlayan teknolojidir. Çünkü sunucu makineler bilginin doğruluğunu garanti etmek zorundadırlar. Ama evde kullanılan makinelerde örneğin oyun makinelerinde bu tip hafızanın kullanılması gereksiz performans kaybına neden olacaktır.

CAS Latency (Column Address Strobe Latency)

CAS (Column Adress Strobe); Bilginin kayıtlı olduğu sütuna ulaşılırken yaşanan gecikmedir. 
RAS (Row Address Strobe); Aranan bilginin kayıtlı olduğu dizeye ulaşırken yaşanan gecikmedir.
RAS-to-CAS; Bilginin var olduğu dizeden sütuna geçerken yaşanan gecikmedir.
CAS Latency DRAM hafıza içinde bulunan bilgiye ulaşabilmek için gerekli olan zaman döngüsüdür. Örneğin CAS3 tipli bir hafızanın, hafızadaki bilgiye ulaşabilmek için 3 zaman döngüsüne ihtiyacı vardır. CAS2 de aynı işi halledebilmek için 2 zaman döngüsüne ihtiyaç vardır. Zaman döngüsü hafıza içindeki veriye ulaşmak için yapılacak işlemleri belirtir, CAS3 tipli bir DRAM hafızanın veriye ulaşmak için yapacağı işlemler şunlardır; Hafızanın takıldığı anakart soketini bulmak, Hafıza satırını ve sonucunda satır numarasını bulmak, Hafıza sütununu ve sonucunda sütün numarasını bulmak. Sonucunda elimize bir satır, bir sütun bilgisi geçmiş oluyor. Bu iki verinin kesiştiği yer verinin olduğu yerin adresidir.

Virtual Memory

Virtual Memory makinenizde bulunan işletim sisteminin, bilgisayarınızın hafızasında yer kalmadığında sabit disk üzerinde bu RAM a ait olan verileri saklayacağı bir dosyayı oluşturması ve her an ulaşıma hazır tutması demektir.

Windows sistemlerde Page File, Linux sistemlerde ise SWAP denilen partion(sabit disk bölümünün) alanının adıdır. Genelde bu ayarlar işletim sistemi kurulurken, otomatik olarak sistem hafızanızın boyutuna göre ayarlanır. Ama daha sonrasında ekleyeceğiniz hafıza modülleri ile bu dosyaların boyutlarının büyütülmesi gerekebilir. İdeal bir Virtual Memory boyutu, makinenizde bulunan hafızanın 2 katı boyutunda olmalıdır. Örneğin makinenizde 2GB RAM varsa bu dosyanın boyutu 4GB olabilir genelde bu işlem işletim sistemi yönetimine bırakılır.

SRAM (Static Random Access Memory - Durağan Rasgele Erişilebilir Hafıza)

Bu SRAM denilen şey işlemcilerde CACHE diye çağırdıkları hafıza tipine denk gelmektedir. L2 cache buna bir örnektir. Bu tip ramlar DRAM a göre çok daha hızlı çalışırlar ama kullanım alanları sınırlıdır.

SRAM ın çeşitleri
Asynchronous Static RAM
Synchronous Burst Static RAM
Pipeline Burst Static RAM

NVRAM (Non Volatile Random Access Memory - Kalıcı Rasgele Erişilebilir Bellek)

Bu RAM lar şu elektronikçilerden veya bilgisayarcılardan aldığınız Flash Bellekler de kullanılan RAM lardır. Bu tip RAM lara veriler yazıldıktan sonra elektrik kesilse bile veriler kaybolmaz.

Video RAM

Video RAM, RAM ekran kartlarında kullanıldığında bu şekilde adlandırılır. 

Flash Memory

Flash Memory, elektrik olmadığında da verileri hafızasında tutabilen bir yapıya sahiptir. Aslında Flash Memory ler EPROM un bir çeşitidir. Tek fark bunlara veri yazımıda yapılabiliyor olmasıdır. 

EPROM (Erasable Programmable Read Only Memory)

Bu tip hafızalarda elektrik kesintisinde bilgi kaybolmaz, hafızanın içi temizlenip yeniden programlanabilir bir yapıya sahiptir. Ama sadece okunabilir şekilde çalışır, dinamik bir yazma işlemi gerçekleştirilemez. Makinelerimizde kullanılan anakartların BIOS (Basic Input Output System) sisteminde, yani bilgisayarın açılması ve gerekli donanımları anakartın tanıması için kullanılan küçük yazılım, işte bu EPROM içinde tutulmaktadır. Bir EPROM veriyi uzun bir süre boyunca saklayabilir.